Targeting NMNAT1 to axons and synapses transforms its neuroprotective potency in vivo.
نویسندگان
چکیده
Axon and synapse degeneration are common components of many neurodegenerative diseases, and their rescue is essential for effective neuroprotection. The chimeric Wallerian degeneration slow protein (Wld(S)) protects axons dose dependently, but its mechanism is still elusive. We recently showed that Wld(S) acts at a non-nuclear location and is present in axons. This and other recent reports support a model in which Wld(S) protects by extranuclear redistribution of its nuclear NMNAT1 portion. However, it remains unclear whether cytoplasmic NMNAT1 acts locally in axons and synapses or at a non-nuclear site within cell bodies. The potency of axon protection by non-nuclear NMNAT1 relative to Wld(S) also needs to be established in vivo. Because the N-terminal portion of Wld(S) (N70) localized to axons, we hypothesized that it mediates the trafficking of the NMNAT1 portion. To test this, we substituted N70 with an axonal targeting peptide derived from amyloid precursor protein, and fused this to NMNAT1 with disrupted nuclear targeting. In transgenic mice, this transformed NMNAT1 from a molecule unable to inhibit Wallerian degeneration, even at high expression levels, into a protein more potent than Wld(S), able to preserve injured axons for several weeks at undetectable expression levels. Preventing NMNAT1 axonal delivery abolished its protective effect. Axonally targeted NMNAT1 localized to vesicular structures, colocalizing with extranuclear Wld(S), and was cotransported at least partially with mitochondria. We conclude that axonal targeting of NMNAT activity is both necessary and sufficient to delay Wallerian degeneration, and that promoting axonal and synaptic delivery greatly enhances the effectiveness.
منابع مشابه
WldS requires Nmnat1 enzymatic activity and N16–VCP interactions to suppress Wallerian degeneration
Slow Wallerian degeneration (Wld(S)) encodes a chimeric Ube4b/nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1) fusion protein that potently suppresses Wallerian degeneration, but the mechanistic action of Wld(S) remains controversial. In this study, we characterize Wld(S)-mediated axon protection in vivo using Drosophila melanogaster. We show that Nmnat1 can protect severed axons fro...
متن کاملWldS Prevents Axon Degeneration through Increased Mitochondrial Flux and Enhanced Mitochondrial Ca2+ Buffering
Wld(S) (slow Wallerian degeneration) is a remarkable protein that can suppress Wallerian degeneration of axons and synapses, but how it exerts this effect remains unclear. Here, using Drosophila and mouse models, we identify mitochondria as a key site of action for Wld(S) neuroprotective function. Targeting the NAD(+) biosynthetic enzyme Nmnat to mitochondria was sufficient to fully phenocopy W...
متن کاملNon-nuclear Wld(S) determines its neuroprotective efficacy for axons and synapses in vivo.
Axon degeneration contributes widely to neurodegenerative disease but its regulation is poorly understood. The Wallerian degeneration slow (Wld(S)) protein protects axons dose-dependently in many circumstances but is paradoxically abundant in nuclei. To test the hypothesis that Wld(S) acts within nuclei in vivo, we redistributed it from nucleus to cytoplasm in transgenic mice. Surprisingly, ins...
متن کاملA local mechanism mediates NAD-dependent protection of axon degeneration
Axon degeneration occurs frequently in neurodegenerative diseases and peripheral neuropathies. Important insight into the mechanisms of axon degeneration arose from findings that the degeneration of transected axons is delayed in Wallerian degeneration slow (Wlds) mice with the overexpression of a fusion protein with the nicotinamide adenine dinucleotide (NAD) synthetic enzyme, nicotinamide mon...
متن کاملIn vivo trafficking and targeting of N-cadherin to nascent presynaptic terminals.
N-cadherin is a prominent component of developing and mature synapses, yet very little is known about its trafficking within neurons. To investigate N-cadherin dynamics in developing axons, we used in vivo two-photon time-lapse microscopy of N-cadherin--green fluorescent protein (Ncad-GFP), which was expressed in Rohon-Beard neurons of the embryonic zebrafish spinal cord. Ncad-GFP was present a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 40 شماره
صفحات -
تاریخ انتشار 2010